Estimation of Blade Design Loads

Craig Hansen Windward Engineering, LLC Salt Lake City, UT

chansen@windwardengineering.com www.windwardengineering.com 801-278-7852

- Types of loads
- Design standards
- Testing and Modeling
- Sample results
- Summary
- · Discussion

What Blade Loads are Needed?

- Design loads for
 - Fatigue strength
 - Ultimate strength
 - Maximum out-of-plane deflections (ensure tower clearance)
- Load components (at multiple spanwise stations)
 - Flap moments
 - Edge moments
 - Torsion generally less important except for some new blade concepts
 - Spanwise tension (pullout) important to some small turbines
 - Becoming more common to analyze combined load effects (load roses)

Safety Standards and Design Guidelines

- IEC (International Electrotechnical Commission)
 - IEC 61400-1 for large turbines
 - IEC 61400-2 for small turbines (< 200m² rotor area)
- GL (Germanischer-Lloyd)
 - Efforts underway to harmonize the IEC and GL requirements
- NREL has developed a set of design guidelines to assist application and interpretation of the IEC standards
 - Contact Sandy Butterfield at NREL
- U.S. Technical Advisory Group oversees development of international consensus standards
 - Contact Craig Hansen for more information

Load Cases

- Wind conditions
 - Turbulence
 - Discrete gusts (1- and 50-yr recurrence interval)
 - Other (temperature, ice, lightning, grid status, etc.)
- Turbine Status
 - Normal power production
 - Power production with a fault
 - Normal parked rotor in 50-yr extreme winds (may include grid loss)
 - Parked rotor with single fault in 1-yr extreme winds
- Standards specify numerous load cases as the minimum set that must be run
 - Seek worst-case loads and fatigue loads among all cases

Estimating Design Loads

- Testing alone is not a viable option
 - Impossible to test in all extreme conditions required by the standards
- Computer modeling is required
 - Model must be validated with test data
 - Model is then used to simulate all load cases and extract fatigue and extreme load values
- Models must include
 - Aerodynamics (unsteady wake effects, static stall, dynamic stall, etc.)
 - Structural dynamics (and aeroelastic interaction with aerodynamic forces)
 - Control systems
 - Fault conditions
- Codes commonly used in the U.S.
 - Fast (available at no cost from NREL, best choice for "typical" configurations)
 - ADAMS® (unlimited capability for turbine configurations, but license fees and steep learning curve)

ADAMS® Animation

- NREL Small Wind Research Turbine (modified Bergey 10kW furling system)
- IEC ECD gust (speed increase from 12 to 27 m/s while direction shifts 60°)

Sample Results—ADAMS Predictions

- WindPACT Rotor Study "Baseline" Rotor
 - NREL sponsored project to explore a wide variety of rotor concepts
 - 1.5MW rating
 - Variable speed generator
 - Full-span pitch control (3 blades coupled)
- Two examples
 - Normal operation in 16 m/s turbulence
 - Parked rotor in 42.5 m/s turbulence

Sample Results—Blade Root Loads

• Normal operation in 16 m/s turbulence

Sample Results—Blade Tip Deflection

Normal operation in 16 m/s turbulence

Sample Results—Tower Deflections

Summary

- Simulations must be used to estimate design loads
 - Models validated with test data
- Hundreds of simulations are required to meet current IEC and GL standards
 - Normal operation, control actions, parked rotor, faults
- Fatigue and peak loads, and peak deflections are extracted from all simulations
 - Rainflow cycle counting is generally used to estimate fatigue damage
 - Combined load effects should be considered in many situations

